Introduction

Point Transformer V3: Simpler, Faster, Stronger

- \Rightarrow State-of-the-art performance on over 20 downstream tasks that span both indoor and outdoor scenarios.
- \Rightarrow Expanding the receptive field from 16 to 1024 points while remaining efficient.
- \Rightarrow 3x increase in processing speed and 10x improvement in memory efficiency compared with PTv2

Pilot Point Transformer V3: Scaling Principle

From Towards Large-scale 3D Representation Learning with Multi-dataset Point Prompt Training

- ⇒ Enhanced with large-scale pre-training, SparseUNet surpasses Point Transformers in accuracy while remaining efficient;
- \Rightarrow **Point Transformers** fails to scale up due to limitations in efficiency;
- $\Rightarrow We hypothesize that model performance is$ **more significantly influenced by scale**than by complex design details;
- ⇒ We should **prioritize simplicity and efficiency over the accuracy** of certain mechanisms;
- \Rightarrow Efficiency enable scalability and further enable stronger accuracy.

Pilot

Point Transformer V3: breaking the curse of permutation invariance

PTv2

PTv3

- $\Rightarrow Classical point cloud transformers build upon point-based backbones, which treat point clouds as$ **unstructured data**and rely on neighboring query algorithms like**kNN**;
- \Rightarrow Yet kNN is extremely inefficient due to difficulty in parallelization. (28% latency)
- \Rightarrow **Do we really need the accurate neighbors** queried by kNN? No, attention is adaptive to kernel shape, all we need to do is relatively precise and enlarge the kernel shape;
- \Rightarrow Inspired by OctFormer and FlatFormer, we move away from the traditional paradigm, which treats point clouds as unordered sets. we choose to **break the curse by serializing point cloud into a structured format**.

Method

Point Transformer V3: making unstructured sparse data structured!

Do precise neighborhood by KNN really matter?

=> No! Attention is adaptive! We just need to make sure the kernel is large! 16 => 1024

Space-filling Curve

Ordered Point Cloud structured 1D format

Patch Partition preserving spatial neighbor relationships

1st Place Solution for 2024 Waymo Open Dataset Challenge in Semantic Segmentation

Method

Point Transformer V3: Serialized Attention

- \Rightarrow Computing the order of given unstructured point cloud and space-filling curve pattern.
- \Rightarrow Making the point cloud structured with the computed order after padding.
- \Rightarrow Then the unstructured data is arranged as an 1D array just **as language tokens**.
- \Rightarrow We can directly **apply** well-optimized **attention operator** designed for structured data.

Method

Point Transformer V3: xCPE

- \Rightarrow **Relative positional encoding** is also time-consuming for point cloud transformers.
- \Rightarrow Use **Sparse Convolution** as a replacement for relative positional encoding (xCPE).
- \Rightarrow If Sparse Convolution is not easy to deploy or CPU only inference,
 - \Rightarrow Use **O-CNN PyTorch** by Peng Shuang Wang as a replacement (Full PyTorch Code)
 - \Rightarrow https://github.com/octree-nn/ocnn-pytorch

Performance

Point Transformer V3 - Extreme

- ⇒ Multi-frame Training. Incorporate two past labelled frames as additional references during both our training and inference processes.
- ⇒ Non-clipping proxy. Clipping points to a specific range was a necessary preprocessing step for perception tasks in outdoor scenarios limited by Sparse Convolution
- ⇒ Model ensemble. Independently train three PTv3 models and combine their predicted logits to form our final submission.

Performance

Point Transformer V3 - Performance

Original		Extreme		
Config	Value	Config	Value	
optimizer	AdamW	optimizer	AdamW	
scheduler	Cosine	scheduler	Cosine	
criteria	CrossEntropy (1)	criteria	CrossEntropy (1)	
	Lovasz [1] (1)		Lovasz [1] (1)	
learning rate	2e-3	learning rate	2e-3	
block lr scaler	1e-1	block lr scaler	1e-1	
weight decay	5e-3	weight decay	5e-3	
batch size	12	batch size	12	
datasets	Waymo	datasets	Waymo	
warmup epochs	2	warmup epochs	2	
epochs	50	epochs	50	
frames	[0]	frames	[0, -1, -2]	
model ensemble	×	model ensemble	\checkmark	

Table 1. Training settings.

Augmentations Parameters		Original Extreme	
random rotate	axis: z, angle: [-1, 1], p: 0.5	\checkmark	\checkmark
point clip	range: [-75.2, -75.2, -4, 75.2, 75.2, 2]	\checkmark	×
random scale	scale: [0.9, 1.1]	\checkmark	\checkmark
random flip	p: 0.5	\checkmark	\checkmark
random jitter	sigma: 0.005, clip: 0.02	\checkmark	\checkmark
grid sampling	grid size: 0.05	\checkmark	\checkmark

Table 2. Data augmentations.

Sem. Seg.	PT	PTv3 [15]		PTv3-EX	
	val	test	val	test	
Model Ensemble	-	\checkmark	-	\checkmark	
Params.	46.2M	46.2M×3	46.2M	46.2M×3	
Training Latency	245ms	$245 \text{ms} \times 3$	482ms	$482ms \times 3$	
Inference Latency	132ms	$132 \text{ms} \times 3$	253ms	$253 \text{ms} \times 3$	
Car	0.9447	0.9571	0.9463	0.9662	
Truck	0.6207	0.6793	0.6283	0.7397	
Bus	0.8665	0.7482	0.8920	0.7792	
Other Vehicle	0.3582	0.3654	0.4857	0.3681	
Motorcyclist	0.1630	0.0000	0.3946	0.1514	
Bicyclist	0.7878	0.9010	0.8030	0.9203	
Pedestrian	0.9120	0.9264	0.9162	0.9372	
Sign	0.7235	0.7404	0.7664	0.7502	
Traffic Light	0.3607	0.3373	0.4276	0.3465	
Pole	0.7778	0.8157	0.8036	0.8254	
Construction Cone	0.7562	0.6690	0.7405	0.6693	
Bicycle	0.7821	0.6851	0.7772	0.7226	
Motorcycle	0.9034	0.8070	0.9154	0.8263	
Building	0.9606	0.9736	0.9636	0.9751	
Vegetation	0.9189	0.8812	0.9242	0.8901	
Tree Trunk	0.6860	0.7500	0.7069	0.7575	
Curb	0.7152	0.7520	0.7226	0.7648	
Road	0.9348	0.9306	0.9368	0.9330	
Lane Marker	0.5712	0.4967	0.5726	0.5111	
Other Ground	0.5206	0.5255	0.5248	0.5414	
Walkable	0.8167	0.7357	0.8196	0.7538	
Sidewalk	0.7872	0.8733	0.7891	0.8788	
mIoU	0.7213	0.7068	0.7480	0.7276	

1st Place Solution for 2024 Waymo Open Dataset Challenge in Semantic Segmentation

Information

Point Transformer V3 - Information

1st Place Solution for 2024 Waymo Open Dataset Challenge in Semantic Segmentation

