
Point Transformer V3: Simpler, Faster, Stronger

Introduction
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 State-of-the-art performance on over 20 downstream tasks that span both indoor and outdoor scenarios.

 Expanding the receptive field from 16 to 1024 points while remaining efficient.

 3x increase in processing speed and 10x improvement in memory efficiency compared with PTv2
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Point Transformer V3: Scaling Principle

Pilot
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 Enhanced with large-scale pre-training, SparseUNet surpasses Point 

Transformers in accuracy while remaining efficient;

 Point Transformers fails to scale up due to limitations in efficiency;

 We hypothesize that model performance is more significantly 

influenced by scale than by complex design details;

 We should prioritize simplicity and efficiency over the accuracy of 

certain mechanisms;

 Efficiency enable scalability and further enable stronger accuracy.
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Point Transformer V3: breaking the curse of permutation invariance
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 Classical point cloud transformers build upon point-based backbones, which treat point clouds as unstructured data and 

rely on neighboring query algorithms like kNN;

 Yet kNN is extremely inefficient due to difficulty in parallelization. (28% latency)

 Do we really need the accurate neighbors queried by kNN? No, attention is adaptive to kernel shape, all we need to do is 

relatively precise and enlarge the kernel shape;

 Inspired by OctFormer and FlatFormer, we move away from the traditional paradigm, which treats point clouds as 

unordered sets. we choose to break the curse by serializing point cloud into a structured format.
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Point Transformer V3: making unstructured sparse data structured!

Method

Do precise neighborhood by KNN really matter?
=> No! Attention is adaptive! We just need to make sure the kernel is large! 16 => 1024

Space-filling Curve Ordered Point Cloud

structured 1D format

Patch Partition

preserving spatial 

neighbor relationships
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Point Transformer V3: Serialized Attention

Method

 Computing the order of given unstructured point cloud and space-filling curve pattern.

 Making the point cloud structured with the computed order after padding.

 Then the unstructured data is arranged as an 1D array just as language tokens.

 We can directly apply well-optimized attention operator designed for structured data.

(a) Reordering

(b) Padding
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Point Transformer V3: xCPE

Method

 Relative positional encoding is also time-consuming for point cloud transformers.

 Use Sparse Convolution as a replacement for relative positional encoding (xCPE).

 If Sparse Convolution is not easy to deploy or CPU only inference,

 Use O-CNN PyTorch by Peng Shuang Wang as a replacement (Full PyTorch Code)

 https://github.com/octree-nn/ocnn-pytorch
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Point Transformer V3 - Extreme

Performance

 Multi-frame Training. Incorporate two past 

labelled frames as additional references during 

both our training and inference processes.

 Non-clipping proxy. Clipping points to a specific 

range was a necessary preprocessing step for 

perception tasks in outdoor scenarios limited by 

Sparse Convolution

 Model ensemble. Independently train three PTv3 

models and combine their predicted logits to form 

our final submission.
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Point Transformer V3 - Performance

Performance
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Point Transformer V3 - Information

Information
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